Antagonists of growth hormone-releasing hormone inhibit growth of androgen-independent prostate cancer through inactivation of ERK and Akt kinases.
نویسندگان
چکیده
The management of castration-resistant prostate cancer (CRPC) presents a clinical challenge because of limitations in efficacy of current therapies. Novel therapeutic strategies for the treatment of CRPC are needed. Antagonists of hypothalamic growth hormone-releasing hormone (GHRH) inhibit growth of various malignancies, including androgen-dependent and independent prostate cancer, by suppressing diverse tumoral growth factors, especially GHRH itself, which acts as a potent autocrine/paracrine growth factor in many tumors. We evaluated the effects of the GHRH antagonist, JMR-132, on PC-3 human androgen-independent prostate cancer cells in vitro and in vivo. JMR-132 suppressed the proliferation of PC-3 cells in vitro in a dose-dependent manner and significantly inhibited growth of PC-3 tumors by 61% (P < 0.05). The expression of GHRH, GHRH receptors, and their main splice variant, SV1, in PC-3 cells and tumor xenografts was demonstrated by RT-PCR and Western blot. The content of GHRH protein in PC-3 xenografts was lowered markedly, by 66.3% (P < 0.01), after treatment with JMR-132. GHRH induced a significant increase in levels of ERK, but JMR-132 abolished this outcome. Our findings indicate that inhibition of PC-3 prostate cancer by JMR-132 involves inactivation of Akt and ERK. The inhibitory effect produced by GHRH antagonist can result in part from inactivation of the PI3K/Akt/mammalian target of rapamycin and Raf/MEK/ERK pathways and from the reduction in GHRH produced by cancer cells. Our findings support the role of GHRH as an autocrine growth factor in prostate cancer and suggest that antagonists of GHRH should be considered for further development as therapy for CRPC.
منابع مشابه
Pten inactivation and the emergence of androgen-independent prostate cancer.
Hormone refractory disease represents a late-stage and generally lethal event in prostate tumorigenesis. Analyses of mouse models have recently shown that the onset of hormone independence can be uncoupled from disease progression and is associated with activation of the phosphoinositide-3 kinase/Akt as well as Erk mitogen-activated protein kinase signaling pathways in the prostate epithelium, ...
متن کاملGrowth hormone-releasing hormone (GHRH) antagonists inhibit the proliferation of androgen-dependent and -independent prostate cancers.
The antiproliferative effects of an antagonist of growth hormone-releasing hormone (GHRH) JV-1-38 were evaluated in nude mice bearing s.c. xenografts of LNCaP and MDA-PCa-2b human androgen-sensitive and DU-145 androgen-independent prostate cancers. In the androgen-sensitive models, JV-1-38 greatly potentiated the antitumor effect of androgen deprivation induced by surgical castration, but was i...
متن کاملRisk of Hormone Escape in a Human Prostate Cancer Model Depends on Therapy Modalities and Can Be Reduced by Tyrosine Kinase Inhibitors
Almost all prostate cancers respond to androgen deprivation treatment but many recur. We postulated that risk of hormone escape--frequency and delay--are influenced by hormone therapy modalities. More, hormone therapies induce crucial biological changes involving androgen receptors; some might be targets for escape prevention. We investigated the relationship between the androgen deprivation tr...
متن کاملInhibitory effect of antagonists of bombesin and growth hormone-releasing hormone on orthotopic and intraosseous growth and invasiveness of PC-3 human prostate cancer in nude mice.
PURPOSE To determine whether antagonists of growth hormone-releasing hormone (GHRH) and bombesin/gastrin-releasing peptide (BN/GRP) can inhibit the orthotopic and metastatic growth of PC-3 human androgen-independent prostate cancers. EXPERIMENTAL DESIGN The effects of administration of GHRH antagonist MZ-J-7-118, BN/GRP antagonist RC-3940-II, and their combination on the growth and metastatic...
متن کاملGrowth hormone-releasing hormone antagonist MZ-5-156 inhibits growth of DU-145 human androgen-independent prostate carcinoma in nude mice and suppresses the levels and mRNA expression of insulin-like growth factor II in tumors.
Insulin-like growth factors I and II (IGF-I and -II) are potent mitogens for various cancers, including carcinoma of the prostate. In several experimental cancers, treatment with antagonists of growth hormone-releasing hormone (GH-RH) produces a reduction in IGF-I and -II, concomitant to inhibition of tumor growth. To investigate the mechanisms involved, we treated male nude mice bearing xenogr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 5 شماره
صفحات -
تاریخ انتشار 2012